Superpixel Segmentation for Endmember Detection in Hyperspectral Images

David R. Thompson¹, Martha Gilmore², Lukas Mandrake¹, Rebecca Castaño¹

¹Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. ²Wesleyan University, Wesleyan Station, Middletown, CT 06459

Overview

“Superpixel segmentation” is a novel approach to facilitate statistical analyses of hyperspectral image data with high spatial resolution and subtle spectral features.

Superpixels oversegment the image into homogeneous regions comprised of several contiguous pixels. This can improve signal strength by exploiting scene features’ spatial contiguity: isolated spectral features are likely to be noise, but spectral features that appear in adjacent pixels are likely to indicate features in the scene. The mean spectra of each superpixel comprise a noise-reduced dataset that improves endmember detection for the images in our study.

Dataset

We evaluated the approach for several images from the Compact Reconnaissance Imaging Spectrometer (CRISM). We used the 1000-2500nm wavelengths of images frt00003e12, frt00008158, frt0000863e, and frt00003G9. We cleaned the images with atmospheric correction based on Olympus Mons spectra (courtesy the Brown Crism Analysis Tool). We then preprocessed the data with a radius-1 median filter in the spectral domain.

An analyst labeled each image with regions of interest corresponding to the 4-8 principal mineral types. According to the linear mixing assumption, each of the scene pixels’ spectra are a linear combination of these “endmembers.” Above: endmembers for CRISM image 3e12.

Segmentation Approach

We generate superpixels with the Felzenszwalb/Huttenlocher graph-based segmentation. The goal is to shatter the image into thousands of superpixels, each with an area of approximately 20 image pixels. We represent the image as a graph of pixels with edge weights proportional to spectral difference (here, a Euclidean distance metric).

Above: Graph representation of pixels in a hyperspectral image. Right: an example edge (vi, vj) connects vertices vi and vj. Left: we consider joining segments Sa and Sb. We compare the maximum internal distance in their spanning trees Mint(Sa, Sb) with the minimum connecting distance Diff(Sa, Sb). Here the candidate edge with minimum distance is denoted by a dashed line.

Above: Users can alter a “minimum size” parameter to control segments’ resolution. Above we see a segmentation of an image patch from CRISM frt0000f3e12, Left: Original subimage. Center: coarse segmentation, minimum region size 100. Right: fine segmentation, minimum region size 20.

Endmember Detection

We presume a standard linear mixing model, and apply a Sequential Maximum Angle Convex Cone endmember extraction technique to automatically recover salient mineral classes.

Above: superpixel representations reduce noise and yield endmember spectra that better match the actual elements of the scene. Here we see the top six recovered endmembers for CRISM image 3e12 (compare to the ground truth minerals at far left).

This research was carried out at the Jet Propulsion Laboratory with support by NASA and the Advanced Multimission Operations System. Copyright 2009 California Institute of Technology. All rights reserved, U.S. Government Support Acknowledged.